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SUMMARY

Various pressure-based schemes are proposed for transient ¯ows based on well-established SIMPLE and PISO
algorithms. The schemes are applied to the solution of unsteady laminar ¯ow around a square cylinder and steady
laminar ¯ow over a backward-facing step. The implicit treatment and the performance of the various schemes are
evaluated by using benchmark solutions with a small time step. Three different second-order-accurate time
derivatives based on different time levels are presented. The different time derivatives are applied to the various
schemes under consideration. Overall the PISO scheme was found to predict accurate results and was robust.
However, for small time step values, alternative schemes can predict accurate results for approximately half the
computational cost. The choice of time derivative proved to be very signi®cant in terms of the accuracy and
robustness of a scheme. Signi®cantly, the one-sided forward differencing scheme was the most successful used in
conjunction with a strongly implicit-based algorithm. However, a greater degree of accuracy was achieved using
the standard PISO algorithm with the Crank±Nicolson time derivative. Recommendations for future work are
discussed. # 1998 John Wiley & Sons, Ltd.

Int. J. Numer. Meth. Fluids, 26: 459±483 (1998).
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1. INTRODUCTION

Incompressible ¯ows are dominated by the effects of pressure variations where their effects on the

velocity ®eld are signi®cant. In this case the continuity equation does not act as a conservation of

mass equation as it does for compressible ¯ows but as an important constraint on the behaviour of the

velocity ®eld. How the pressure is derived from the continuity and momentum equations is not

straightforward using primitive variables. One approach is to derive a pressure equation from the

continuity equation. This has been done in a number of ways. Harlow and Welch1 derived one of the

earliest primitive variable methods with the marker and cell (MAC) scheme. Other primitive variable

methods include a steady state solution procedure called the semi-implicit method for pressure-linked

equations (SIMPLE) scheme.2±6 Issa and coworkers7,8 developed an improved pressure±velocity

calculation method called the pressure-implicit with splitting of operators (PISO) scheme, initially

aimed at solving unsteady ¯ows. However, a simpli®ed version can be interpreted as an extension of

the SIMPLE method and is usually superior for solving steady state problems. Wanik and Schnell9

compared the SIMPLE and PISO schemes for turbulent ¯ow problems following the standard
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formulations for both schemes. The focus of this work was how the turbulent source terms should be

treated and overall the PISO scheme was found to be a more successful scheme than the SIMPLE

scheme. Kim and Benson10 predicted that the `simpli®ed' MAC scheme (SMAC) was probably more

ef®cient than PISO for unsteady problems despite the dif®culties in making the temporal derivatives

second-order-accurate. Kim and Benson also concluded that the PISO scheme is a more ef®cient

method to solve steady state problems. Cheng and Arm®eld11 undertook a similar investigation

comparing SIMPLE-consistent (SIMPLEC), PISO and SMAC; they showed that in terms of

suppressing pressure oscillations the SMAC method is more ef®cient than the SIMPLEC and PISO

methods. There have been several SIMPLE-like schemes proposed for steady state ¯ows for various

applications; however, the performance of the SIMPLE scheme for steady state ¯ows is strongly

dependent on the underrelaxation treatment, therefore alternative steady state schemes have received

little interest.12±14 All the schemes described are usually called a `pressure Poisson' or `pressure-

based' method (in some cases they are known as a `pressure correction' method), because the

pressure ®eld is a dependent variable which invariably forms a Poisson-type problem throughout the

solution domain. Pressure-based schemes are reviewed in detail elsewhere.6,15±18

The basis of the present research is to use arguably one of the most popular pressure-based

methods, the SIMPLE scheme, and its closely related counterpart the PISO scheme. The present

study essentially follows the formulations of the original SIMPLE versions.3±6 Additionally, the

present study also follows the formulation of the original PISO scheme,7 which as previously stated is

closely related to the SIMPLE methodology. The SIMPLE scheme is altered to predict time-

dependent ¯ows; this has previously been presented.19 StroÈll et al.20 have also considered unsteady

piston±cylinder ¯ows using a SIMPLE algorithm.

The aim of the present research is to investigate variants of the SIMPLE and PISO schemes with

the objective of obtaining an ef®cient unsteady state solver. After discussing the governing equations

and the discretization methodology, variants on the SIMPLE and PISO schemes are presented in

Section 3. The current research is also concerned with applying various time derivative terms; the

time derivative terms under consideration are presented in Section 4. As the main focus of the

research is on deriving an ef®cient time-dependent solution scheme, the majority of the simulations

undertaken are for laminar ¯ow around a square cylinder.

2. GOVERNING EQUATIONS AND DISCRETIZATION

2.1. Governing equations

The governing equations under consideration for the present investigation of planar constant-

density laminar ¯ow are the equation of continuity
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where r, m, u and v are the ¯uid density, viscosity and velocity components.
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2.2. Discretization

The governing equations are presented in primitive variable form. The next stage is to apply

conventional differencing to equations (1)±(3). This process is discussed in detail elsewhere16 and

requires no further elucidation here. For the sake of generality the discretized equations are presented

in coef®cient form, following the terminology used in Reference 5. This means that our following

arguments can be applied to various ®nite difference or ®nite volume discretization schemes.

The governing equations (1)±(3) may be expressed in discretized form as

Dx�ru�n�1 � Dy�rv�n�1 � 0; �4�
An

P;uun�1
P �PAn

M ;uun�1
M ÿ Dxpn�1 � Sn�1

u � Sn
u ; �5�

An
P;vv

n�1
P �PAn

M ;vvn�1
M ÿ Dypn�1 � Sn�1

v � Sn
v : �6�

In equations (5) and (6) the time derivative term has been incorporated into the An
P and source terms.

For the case of incompressible laminar ¯ow the source terms Sn
u and Sn

v only contain temporal terms

and the source terms Sn�1
u and Sn�1

v are zero. For more complex ¯ows such as compressible ¯ows or

modelled turbulent ¯ows there will be Sn�1
u and Sn�1

v source terms, which we have included above for

the sake of generality. The physical source terms can be dealt with in a number of ways.9 The A

coef®cient terms also contain convective and diffusive contributions. The index M is a grid identi®er

referring to all the nodes surrounding the pole node that are involved in the formulation of the ®nite

difference representation of the spatial ¯uxes. The subscript P denotes the `pole' node or cell. In the

above discretization, similar to Patankar5 and Issa,7 linear implicit treatment of the terms is applied,

which means that terms such as u2 are split to form unun�1.

The above equations are general in form; for example, similar equations have been used in the

presentation of various numerical algorithms.5,7 The scheme's methodology such as the discretization

procedures are described elsewhere21 and therefore do not require further explanation here. The

example calculations employ a staggered Cartesian grid system1 and the example calculations

presented later use a second-order upwind differencing scheme for the majority of the calculations.22

Similar methodologies have been used in previous studies.23±25

3. NUMERICAL ALGORITHMS

The fundamental concept of the SIMPLE and PISO schemes is to derive a pressure correction

equation by enforcing mass continuity over each cell. The way this is achieved is as follows. The pole

velocity terms in the discretized momentum equations are substituted into the equation of continuity,

which leads to the problem that the velocity and pressure ®elds require simultaneous solution. As this

is dif®cult to solve, the surrounding velocity terms around the pole node are assumed to remain

constant. Alternatively, we could say that the `velocity corrections' surrounding the pole node are

zero. This terminology is used by Patankar.5 The assumption that the velocity corrections adjacent to

the pole cell are negligible is a major premise of the SIMPLE algorithm. This premise has been

slightly modi®ed in closely related schemes such as SIMPLE-revised,26 whereas the PISO scheme

introduces velocity corrections in the succeeding `correction stage'. The treatment of the velocity

correction terms by the SIMPLE scheme is acceptable when solving steady state ¯ows, as we require

only a temporary linkage between the pressure and velocity ®elds. As the linkage is repetitively

applied, the pressure and velocity ®elds should ultimately satisfy both the momentum and continuity

equations. Thus any approximations made in the solution of the algebraic equations or the solution

procedure itself are justi®ed, provided that the approximations reduce with convergence. We can also

argue that this approximation is also acceptable if small time steps are used for unsteady calculations.
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The approximation of ignoring surrounding velocity corrections allows velocity corrections to be

directly related to pressure correction terms, which leads to a simpler solution procedure. This is an

advantage of the SIMPLE scheme in contrast with the PISO scheme. The mass continuity is enforced

for each cell by applying a velocity±pressure correction relationship to obtain a pressure correction

equation; after this equation is solved, the velocity±pressure corection relationship is used to `correct'

the velocity prediction, ensuring that continuity is satis®ed. The SIMPLE scheme is considered to be

a point-by-point method.3 However, if the solution procedure is applied across the entire domain, as

is the case for the PISO scheme, then the SIMPLE scheme can be described as a `disguised pressure

Poisson' method.16 Such an approach is necessary when carrying out time-dependent calculations.

The SIMPLE methodology has been introduced in some detail,3,5 while the PISO scheme has been

discussed in Reference 7; ¯ow charts of the methodology are given in Reference 27. Below, attention

is focused on various alternatives to the standard SIMPLE and PISO schemes. The momentum

equations are represented by a single equation where U can be replaced by either u or v. There are 11

schemes presented in total, including the SIMPLE and PISO schemes. The alternative algorithms are

aimed at producing a more implicit scheme where the A coef®cients are not based on the nth time

level but on the n� 1 level; this is explained later.

Scheme 1. SIMPLE (for transient ¯ows)

The standard SIMPLE scheme5 is not formulated to solve transient ¯ows, although a discretized

time derivative term is introduced. This term is used in order to underrelax the scheme; this approach

essentially amounts to local time stepping.4 How this relates to directly underrelaxing terms is

discussed in Reference 21. However, in the present investigation, real time derivatives are applied.

Step 1, predict velocities based on the momentum equations:

An
PUP* �

P
An

M UM*ÿ Dpn � Su: �7�
Step 2, predict pressure and velocities in order to satisfy continuity using equation (4) and the

equation

An
PUP** �PAn

M UM*ÿ Dp*� Su: �8�
As previously described, the second step is achieved by substituting the uP** and vP** terms into the

discretized equation for continuity, equation (4), and thereby obtaining a Poisson pressure equation

with source terms based on the velocity terms u* and v*. After this is solved, the solution can then be

substituted back into equation (8) in order to obtain the terms u** and v**. It is probably most

ef®cient to actually derive a Poisson pressure correction equation by taking step 2 away from step 1,

which gives

UP** � UP*ÿ D�p*ÿ pn�=An
P; �9�

and so it is this expression that is substituted into the discretized continuity equation. For more details

on deriving the velocity±pressure correction equation, see Reference 5 or 21.

The SIMPLE scheme has been enhanced in a number of ways by others; some recent

enhancements include a non-staggered formulation using a ®nite difference approach.28 Multigrid

techniques have been incorporated29 as well as a multigrid solver.30 The original formulations of the

SIMPLE scheme used Cartesian grid systems; however, body-®tted co-ordinates are now very

popular31,31 and the ®nite element method has been used with the SIMPLE scheme.33 Enhancements

made to the SIMPLE-type methodologies have been reviewed.18,34,35

Note that we have used a slightly different argument from Patankar5 for equations (7) and (8). In

Reference 5, equation (8) uses the term AM UM** instead of AM UM*; however, Patankar then applies the
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approximation that AM UM**ÿ AM UM* � 0. The advantage with the current presentation is that no

hidden approximations are applied.

Scheme 2. SIMPLE (doubled)

This attempts to improve the SIMPLE algorithm by updating the coef®cients and reapplying the

scheme.

Step 1, predict velocities based on the momentum equations:

An
PUP* �

P
An

M UM*ÿ Dpn � Su: �10�
Step 2, predict pressure and velocities in order to satisfy continuity using equation (4) and the

equation

An
PUP** �PAn

M UM*ÿ Dp*� Su: �11�
Next update the coef®cient terms so that An

P ! Ap** and then repeat steps 1 and 2, accounting for

steps 3 and 4.

Note that in previous studies using the SIMPLE and PISO schemes the A coef®cient does not have

a superscript, as it is implicitly known that the A term is represented by the nth level of the velocity

terms. In the present study the `n-level' superscript of the A coef®cients is explicitly stated, referring

to which velocity terms are being used for their derivation.

Scheme 3. SIMPLE� additional continuity level

This scheme is an extension of the SIMPLE algorithm with an additional correction level that

satis®es continuity, so the additional step is as follows.

Step 3, correct velocities and pressure such that continuity is satis®ed using equation (4) and the

equation

An
PUP*** �PAn

M UM*ÿ Dp**� Su: �12�
This scheme leads on to the PISO scheme where the UM* term is replaced by a UM** term, thus

introducing non-zero velocity corrections that surround the pole node.

Scheme 4. PISO

Scheme 4 is the standard PISO scheme.7,8 The similarities and differences of the PISO algorithm

compared with the SIMPLE algorithm are discussed in Reference 7.

Step 1, predict velocities based on the momentum equations:

An
PUP* �

P
An

M UM*ÿ Dpn � Su: �13�
Step 2, predict pressure and velocities in order to satisfy continuity using equation (4) and the

equation

An
PUP** �PAn

M UM*ÿ p*� Su: �14�
Step 3, correct pressure and velocities such that continuity is satis®ed using equation (4) and the

equation

An
PUP*** �PAn

M UM**ÿ Dp**� Su: �15�
From the expressions above we can see how similar the PISO and SIMPLE algorithms are,

although in contrast with the SIMPLE scheme the PISO scheme has an additional corrector level that

satis®es continuity. The PISO scheme is not fully implicit, as the velocity correction terms are
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explicitly introduced, i.e. the pole velocity term is a correction order higher than the surrounding

nodes. This means that the PISO scheme has the extra complexity that the velocity correction terms

need to be calculated and stored.

The PISO scheme, like the SIMPLE scheme, has been developed mainly for combusting

¯ows.8,27,36 This includes combusting particle ¯ows.37 The multigrid method has been applied to

PISO, again for a combustion chamber application.38 Dukowicz39 presented an example of

particulate time-dependent ¯ow with a Monte Carlo simulation for particle dispersion.

Scheme 5. PISO� additional continuity level

This scheme is the same as Scheme 4 with an additional correction level for pressure and velocities

which satis®es continuity. The additional step is as follows.

Step 4, correct pressure and velocities such that continuity is satis®ed using equation (4) and the

equation

An
PUP**** �PAn

M UM***ÿ Dp***� Su: �16�

Scheme 6. PISO� additional momentum level

This scheme is the same as Scheme 4 with an additional correction level for velocities derived from

the momentum equations. The coef®cients terms are updated from the previous step. The current

pressure ®eld is used. Thus the additional level is as follows.

Step 4, correct velocities based on the momentum equations:

AP***UP**** �PAM***UM****ÿ Dp**� Su: �17�

Scheme 7. PISO� SIMPLE

This scheme ®rst applies PISO, then updates the coef®cient terms so that An
P ! AP** and then

applies the SIMPLE algorithm. Obviously, the most up-to-date pressure gradient is used, so that

Dpn ! Dp** is used for step 4. The scheme therefore has two additional steps which take the

following form.

Step 4, correct the velocities based on the momentum equations:

AP***UP**** �PAM***UM****ÿ Dp**� Su: �18�
Step 5, correct pressure and velocities such that continuity is satis®ed using equation (4) and the

equation

AP***UP***** �PAM***UM****ÿ Dp***� Su: �19�

Scheme 8. PISO (doubled)

This scheme is similar to Scheme 2 in that the standard algorithm is repeated twice, but in this case

for the PISO scheme. The A coef®cients are updated so that An
P ! AP*** after the ®rst loop, as well as

the pressure ®eld.

Scheme 9

This scheme has similarities to the SIMPLE scheme in that there are no velocity correction terms.

The only difference is that the coef®cient terms are updated after the ®rst step and the velocities are

then recalculated.
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Step 1, predict velocities using the momentum equations:

An
PUP* �

P
An

M UM*ÿ Dpn � Su: �20�
Step 2, predict velocities using the momentum equations and updated coef®cients:

AP*UP** �PAM*UM**ÿ Dpn � Su: �21�
Step 3, correct pressure and velocities in order to satisfy continuity using equation (4) and the

equation

AP*UP*** �PAM*UM**ÿ Dp*� Su: �22�

Scheme 10

This is an extension of Scheme 9 with an additional step that enforces mass continuity. The

additional step is as follows.

Step 4, correct pressure and velocities in order to satisfy continuity using equation (4) and the

equation

AP*UP**** �PAM*UM**ÿ Dp**� Su: �23�

Scheme 11

In contrast with Scheme 10, an alternative extension of Scheme 9 is to use an extra step which

requires velocity correction terms in its solution.

Step 4, correct pressure and velocities in order to satisfy continuity using equation (4) and the

equation

AP*UP**** �PAM*UM***ÿ Ap**� Su: �24�

4. TIME DERIVATIVES

The standard PISO scheme7 uses the Crank±Nicolson scheme for the time derivative term. This

option seems to be the most obvious as it requires the minimal amount of memory storage of the

velocity ®elds. Also, the standard PISO scheme splits the operators so that they are linearly implicit,

which means that UnUn�1 terms are obtained. If this is the case, it is straightforward to show that a

time derivative term based on the n� 1
2

time level should give a good approximation. However, some

of the previous schemes presented attempt to update the coef®cient terms so that we actually obtain

fully implicit terms U n�1Un�1. If this is successfully achieved, it is anticipated that one-sided forward

differencing will be a better approximation as all the terms are based on the n� 1 level.

The original SIMPLE scheme5 does not use real time stepping but introduces the concept of

`pseudo time stepping'; in this context the standard SIMPLE scheme also uses the Crank±Nicolson

scheme.

4.1. Crank±Nicolson (n� 1
2

level)

The Crank±Nicolson scheme is discussed in Reference 40:

@U

@t

����
n�1=2

� Un�1 ÿ U n

Dt
� O�Dt2�: �25�
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Kim and Benson10 state that this term is ®rst-order-accurate when applied to the PISO scheme. This is

true if we consider the PISO scheme to be fully implicit; however, as the coef®cient terms are

explicitly treated, this assumption does not appear to be wholly valid. It is therefore more

enlightening to regard the Crank±Nicolson scheme as being second-order-accurate based around the

n� 1
2

time level. Note that it may prove to be more accurate to base the time derivative on the n� 1
2

level for the standard PISO scheme.

4.2. Leap-frog (nth level)

The leap-frog scheme is discussed in Reference 40:

@U

@t

����
n

� U n�1 ÿ Unÿ1

2Dt
� O�Dt2�: �26�

This time derivative is expected to perform poorly in terms of accuracy, as the schemes under

consideration are semi-implicit, and the main motivation of deriving the variants from the SIMPLE

and PISO schemes is to obtain a fully implicit scheme, the advantage of using an implicit approach as

opposed to an explicit approach.5,40

4.3. One-sided forward differencing (n� 1 level)

This scheme is discussed in Reference 41 and is used by Kim and Benson10 in their simulations

with the PISO scheme:

@U

@t

����
n�1

� 3U n�1 ÿ 4Un � U nÿ1

2Dt
� O�Dt2�: �27�

In conclusion, the time derivative terms presented above are all second-order-accurate (based on

different time levels). We have also assumed that the time step value is constant during the

simulation.

5. RESULTS

The schemes presented in Section 3 are applied to the solution of laminar ¯ow around a square

cylinder to test the `implicit' nature of the schemes. We have also carried out a transient ¯ow

calculation of steady state laminar ¯ow over a backward-facing step for two grid systems, mainly in

order to evaluate the discretization schemes used in the present investigations.

5.1. Flow around a square cylinder

Planar ¯ow around a square cylinder is of great interest in ¯uid mechanics because the geometry is

simple and fundamental; also, for certain Reynolds numbers it exhibits the phenomena of vortex

shedding. The ¯ow behaviour is similar to the extensively studied ¯ow around a circular cylinder.42

The ¯ow readily becomes unsteady at low Reynolds numbers and is therefore a good test case for a

transient solution procedure.

Unsteady laminar ¯ows around a square cylinder tend to be only studied numerically, although

there are some experimental data.43 The numerical studies tend to use the ¯ow problem as a

computational exercise comparing differencing schemes44 or outlet boundary conditions45 or as a

validation exercise.46,47 The main issue for low-Reynolds-number ¯ows is how the width-to-height

ratio of the cylinder (w : h) affects the ¯ow. Although cylinders that do not have a 1 : 1 ratio are not

square, these studies closely relate to the present test case and usually include an example of ¯ow
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around a square cylinder.48±51 The effect of varying the angle of attack has been studied by Davis and

Moore.48 Davis et al.43 have also studied numerically how the ¯ow is affected by enclosing the

square cylinder in a channel. At low Reynolds numbers this suppresses the unsteady nature of the

¯ow. A similar issue has been studied by Arnal et al.,52 who investigated three cases for a square

cylinder, one of which included the freestream case. The other two cases were ¯ow past a square

cylinder which is in contact with either a moving or a stationary solid boundary. The velocity of the

moving solid boundary is set to the freestream; similarities between this case and the freestream case

were observed.

Finally, the pioneering numerical work of Fromm and Harlow53 attempted to predict the onset of

vortex shedding. The study by Fromm and Harlow predicted the ¯ow around a 1 : 6 cylinder for a

range of Reynolds numbers from very low values (Re� 10) to reasonably high values (Re� 1000).

Unfortunately, the central differencing scheme used tended to fail at the high Reynolds numbers. The

study found that the ¯ow became unstable at Re� 50. Kelkar and Patankar54 also studied a series of

low-Reynolds-number cases in order to predict when the ¯ow becomes unsteady. They concluded

that Reynolds numbers above 50 are unstable by using a steady state ¯ow solution procedure with a

perturbation variable to predict when the ¯ow becomes unstable.

5.2. Numerical analysis of square cylinder problem

The main test case used in the present investigations is laminar ¯ow around a square cylinder for a

Reynolds number Re� 250. This problem has been studied numerically.46±49 Okajima50 has

undertaken predictions for the test cases of Re� 150 and 500, so his study is also of interest. In

addition to the numerical calculations, Okajima49 and Davis and Moore48 have presented limited

experimental data for the test case of Re� 250. The Reynolds number is based on the diameter of the

cylinder and the freestream velocity.

Two interpolation schemes were used in the present study: the hybrid scheme55 and the SOUD

scheme.22 The hybrid scheme assumes either linear or `®rst-order upwind' interpolation depending on

the grid Peclet number. The SOUD scheme assumes second-order upwind interpolation between grid

points and is generally considered a superior scheme.56,57

The geometry of the problem is illustrated in Figure 1. Three grid systems 1±3 have been used in

the present investigation which have grid resolutions of 50650, 110690 and 2006150 respectively.

The grid systems are non-uniformly distributed with re®nements of (Dx� 0�098, Dy� 0�127),

(Dx� 0�098, Dy� 0�065) and (Dx� 0�063, Dy� 0�037) away from the square cylinder. Grid systems

2 and 3 have the same problem domain. All problem domains place the upper and lower boundaries

8D away from the cylinder, where D is the diameter of the cylinder. Length scales are non-

dimensionalized by D. The problem domain for grid 1 places the inlet boundary 3D upstream of the

cylinder and the outlet boundary 9D away from the cylinder. The problem domain for grids 2 and 3

places the inlet boundary 4D upstream of the cylinder and the outlet boundary 15D away from the

cylinder. A uniform velocity pro®le is set at the inlet boundary. The upper=lower boundary condition

sets du=dy� 0 and v � 0 across it. The outlet boundary condition is calculated via extrapolation.21

(The SIMPLE and PISO methodologies do not require outlet pressure terms.) The present outlet

condition was developed for steady state ¯ows; nevertheless, the current results appear to be

acceptable in the outlet region. A possible adaptation of the outlet condition is discussed in Reference

58. This is an area of future research.

The matrix is solved using the tridiagonal matrix algorithm40 (TDMA); the algorithm sweeps

through the solution domain 125 times. This means that the matrix array is solved to an accuracy of at

least 0�1% of the maximum change.
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5.3. Flow predictions around a square cylinder

If the ¯ow around the cylinder is impulsively started, then initially the velocity ®eld is

characterized by two main features, namely (i) the stagnation point on the axis of symmetry behind

the cylinder and (ii) the centre of recirculation. Initially the ¯ow separates from the downstream

corner, forming recirculation regions behind the cylinder. The upstream ¯ow that is forced away from

the cylinder recovers slowly downstream, returning to its original uniform pro®le. The recirculation

regions grow in size with respect to time. However, the growth in the recirculation regions is not

maintained and the vortex regions start to oscillate, building up perturbation effects from one another

until the system ®nally becomes unstable and vortices are shed. The vortices are periodically shed

from opposing upper and lower surfaces, where the frequency increases with time until it ®nally

maintains a constant value. This behaviour is observed in Figure 2, which shows the streamlines at

non-dimensionalized times of 10±90 at intervals of 10. There are strong pressure gradients at the

leading edge of the cylinder. The pressure recovers behind the cylinder, initially forming symmetric

peaks which start to oscillate up and down as the ¯ow becomes unsteady. When the vortex shedding

starts, the pressure peaks are also `shed', appearing in the wake where the ¯ow changes direction. The

pressure ®eld is shown in Figure 3 at non-dimensionalized times of 10±90 at intervals of 10. The

previous results presented are taken from predictions using the standard PISO scheme with the SOUD

scheme and using non-dimensionalized time steps DT� 0�05 and grid 2. The ®gures do not show the

complete problem domain, only the region 3D upstream, 10D downstream and 5D either side of the

cylinder.

5.4. Comparison of numerical results

A start-up ®le at T� 100 was created in order to make comparisons. This is done for the following

reasons: (i) we want to make sure that the transient nature of the ¯ow has been established, which can

take up to 100 non-dimensionalized time units for certain simulations; (ii) initially large CD values

are predicted because the ¯ow is impulsively started; (iii) we can ensure to a fair degree of accuracy

that the various calculations will be in phase. Tests comparing the various schemes were undertaken

only for grid 1, using a relatively large time step DT� 0�05. In fact, this time step is probably

approaching the maximum size of time step we could use in order to capture the physics of the ¯ow

(the drag ¯uctuations have a sinusoidal non-dimensionalized period of three). Since we are only

interested in the implicit treatment of the results, we have taken as a datum set of results the

predictions using the PISO scheme with a small time step DT� 0�005. These datum results will of

course be subject to the same spatial discretization errors as the other sets of results. The effect of the

spatial discretization error is initially demonstrated in Table I, which includes predictions from the

Figure 1. Illustration of problem of ¯ow around a square cylinder
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PISO scheme with a time step DT� 0�05 using the hybrid differencing scheme.55 The other sets of

predictions use the SOUD scheme,22 as is the case for the majority of the predictions.

The results shown in Table I use the Crank±Nicolson time derivative scheme. Table I shows

predictions of the maximum and minimum lift coef®cients CMAX
L and CMIN

L as well as the maximum,

minimum and average drag coef®cients CMAX
D , CMIN

D and CAVE
D . The coef®cient terms are de®ned as

in previous studies.48 The table also shows the average period of lift oscillations, TL, which is the

inverse of the Strouhal number. The TD is the total period of drag oscillations. Physically one might

expect that TD should be the same as TL; however, as Vickery59 argues, this is not necessarily the

case.

Schemes 1±3 failed to predict stable oscillations and the results eventually diverged. The hybrid

differencing scheme predicts a signi®cantly different set of results, demonstrating how the scheme

essentially behaves as a ®rst-order upwind differencing scheme. The schemes that managed to predict

Figure 2. Streamlines of ¯ow around a square cylinder at intervals of 10 non-dimensionalized time units from an impulsive start
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stable oscillations are compared with the datum set of results. The largest discrepancies occur in the

peak-to-peak results, with errors as large as 20%. For this set of comparisons, Scheme 4 (the PISO

scheme) gives the best agreement with the datum values. Scheme 5 predicts results almost identical to

Scheme 4, albeit with a very slight improvement. The next largest discrepancy occurs for the mean

drag coef®cients, where again Scheme 4 predicts closest agreement with the datum results. However,

the oscillation periods TL and TD are, relatively speaking, poorly predicted by Scheme 4 and better

comparisons are made with Schemes 6, 7 and 9±11. Despite this fact, Scheme 4 only has

discrepancies of 1% and 3% for the TL and TD terms, which are therefore still in very good agreement

with the datum results, whereas the other schemes tend to fail with greater magnitude for other ¯ow

characteristics. Schemes 6, 7 and 9±11 predict overall reasonable agreement with the datum results. It

is interesting to note that the Scheme 8 results have greater discrepancies with the datum results than

Scheme 4 and yet Scheme 8 is simply Scheme 4 applied twice; far from being discouraging, this

Figure 3. Pressure contours of ¯ow around a square cylinder at intervals of 10 non-dimensionalized time units from an
impulsive start
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con®rms our supposition made in Section 4 that the standard PISO scheme may predict better results

with the Crank±Nicolson time derivative as the ¯ow solution uses U nU n�1 terms.

Further results were run for only the time period T� 100±125, which is estimated to give a

reasonable time period for comparisons. Table II shows the same ¯ow characteristics as presented in

Table I for Schemes 1±11 but in this case for the leap-frog time derivative. The datum results have

different values compared with Table I because the ¯ow characteristics are only compared for the

time period T� 100±125, otherwise the datum results are the same as those used in Table I.

Compared with the previous set of results, more schemes failed to predict stable oscillations. Thus, in

addition to Schemes 1±3 failing, Schemes 6, 9 and 10 diverged. In contrast with the results using the

Crank±Nicolson scheme, the discrepancies have increased as expected. Curiously, however, the lift

predictions for Scheme 11 have improved. As we have previously observed, Schemes 4 and 5

predicted virtually identical results (this is in fact in agreement with Issa's7 analysis of the PISO

scheme). Overall, the deterioration in the results is most signi®cant for the peak-to-peak values as

well as the TL values. Schemes 4, 5 and 11 give the best agreement for the majority of the datum

values.

Table I. Flow characteristics for problem of ¯ow around a square cylinder using various algorithms and Crank±
Nicolson scheme

CMAX
L CMIN

L TL CMAX
D CMIN

D CAVE
D TD

Datum 1�006 ÿ0�998 6�112 1�876 1�616 1�744 6�019
Hybrid 0�348 ÿ0�341 7�551 1�686 1�648 1�668 7�548

1 Ð Ð Ð Ð Ð Ð Ð
2 Ð Ð Ð Ð Ð Ð Ð
3 Ð Ð Ð Ð Ð Ð Ð
4 0�894 ÿ0�886 6�177 1�832 1�622 1�726 6�177
5 0�895 ÿ0�888 6�177 1�833 1�621 1�726 6�174
6 0�855 ÿ0�796 6�075 1�815 1�609 1�679 6�076
7 0�872 ÿ0�824 6�057 1�809 1�612 1�685 6�056
8 0�872 ÿ0�824 6�044 1�812 1�612 1�685 6�044
9 0�856 ÿ0�789 6�085 1�816 1�609 1�679 6�082

10 0�876 ÿ0�827 6�060 1�813 1�614 1�688 6�062
11 0�849 ÿ0�781 6�066 1�815 1�607 1�676 6�070

Table II. Flow characteristics for problem of ¯ow around a square cylinder using various algorithms and leap-
frog scheme

CMAX
L CMIN

L TL CMAX
D CMIN

D CAVE
D TD

Datum 1�006 7 0�997 6�207 1�876 1�616 1�742 6�006
1 Ð Ð Ð Ð Ð Ð Ð
2 Ð Ð Ð Ð Ð Ð Ð
3 Ð Ð Ð Ð Ð Ð Ð
4 0�854 7 0�793 6�234 1�818 1�613 1�689 6�258
5 0�853 7 0�794 6�234 1�817 1�613 1�688 6�258
6 Ð Ð Ð Ð Ð Ð Ð
7 0�844 7 0�747 6�117 1�793 1�596 1�660 6�158
8 0�840 7 0�747 6�101 1�797 1�599 1�664 6�130
9 Ð Ð Ð Ð Ð Ð Ð

10 Ð Ð Ð Ð Ð Ð Ð
11 0�879 7 0�779 6�300 1�800 1�603 1�668 6�128
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Table III shows the same ¯ow characteristics predicted by Schemes 1±11 using the one-sided

forward differencing time derivative term, again for the time period T� 100±125. For this case, all

schemes predict stable oscillatory ¯ow. Generally speaking, despite a slight disagreement with the TL

value, Schemes 2, 7, 8 and 10 predict superior results for this case. Very poor predictions are made

using Scheme 6, whereas Schemes 4 and 5 again predict virtually identical results which are

reasonable and Scheme 1 predicts results to the same order of accuracy.

The overall accuracy of the various schemes with the various time derivatives is examined in Table

IV. In order to make a direct comparison with the datum results, the standard deviations of the lift and

drag coef®cients are calculated for the time period T� 100±125. The results are presented in Table

IV.

The PISO results using the hybrid scheme with the Crank±Nicolson scheme are initially very good

in comparison with some of the other schemes: sL � 4�09� 10ÿ1 and sD � 8�49� 10ÿ2. However,

they deteriorate rapidly if the time period for the comparison is increased, unlike other schemes. The

reason for this is that the hybrid results are more prone to become out of phase with the datum results

Table III. Flow characteristics for problem of ¯ow around a square cylinder using various algorithms and one-
sided forward differencing scheme

CMAX
L CMIN

L TL CMAX
D CMIN

D CAVE
D TD

Datum 1�006 ÿ0�997 6�207 1�876 1�616 1�742 6�006
1 1�113 ÿ1�098 6�167 1�988 1�613 1�782 6�114
2 0�974 ÿ0�964 6�084 1�867 1�609 1�734 6�014
3 1�173 ÿ1�159 6�151 2�011 1�615 1�792 6�086
4 1�107 ÿ1�092 6�134 1�984 1�613 1�781 6�114
5 1�108 ÿ1�093 6�134 1�985 1�612 1�780 6�100
6 0�895 ÿ0�889 6�051 1�858 1�610 1�727 6�030
7 0�949 ÿ0�940 6�034 1�863 1�612 1�733 6�000
8 0�943 ÿ0�936 6�017 1�864 1�612 1�733 5�986
9 0�890 ÿ0�882 6�101 1�855 1�610 1�726 6�014

10 0�956 ÿ0�946 6�051 1�868 1�612 1�735 6�000
11 0�887 ÿ0�869 6�034 1�853 1�609 1�724 6�014

Table IV. Estimated accuracy of lift and drag coef®cients using various algorithms and various time
derivativeschemes

Crank±Nicolson Leap-frog Forward difference

sL sD sL sD sL sD

1 Ð Ð Ð Ð 7�00610ÿ2 5�75610ÿ2

2 Ð Ð Ð Ð 2�36610ÿ2 6�47610ÿ3

3 Ð Ð Ð Ð 1�00610ÿ1 5�01610ÿ2

4 3�48610ÿ2 2�51610ÿ2 1�22610ÿ1 1�71610ÿ2 6�97610ÿ2 5�95610ÿ2

5 3�33610ÿ2 2�54610ÿ2 1�20610ÿ1 1�73610ÿ2 7�12610ÿ2 5�99610ÿ2

6 1�37610ÿ1 7�81610ÿ3 Ð Ð 6�12610ÿ2 1�72610ÿ2

7 1�12610ÿ1 1�46610ÿ2 2�05610ÿ1 3�81610ÿ2 3�32610ÿ2 7�99610ÿ3

8 1�22610ÿ1 1�23610ÿ2 2�03610ÿ1 3�36610ÿ2 3�55610ÿ2 1�06610ÿ2

9 1�46610ÿ1 1�02610ÿ2 Ð Ð 6�82610ÿ2 1�34610ÿ2

10 1�20610ÿ1 1�51610ÿ2 Ð Ð 3�49610ÿ2 6�56610ÿ3

11 1�53610ÿ1 9�16610ÿ3 1�61610ÿ1 3�34610ÿ2 7�35610ÿ2 1�52610ÿ2
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as the arti®cial viscosity is not immediately established in the ¯ow. The results in Table IV con®rm

our previous analyses, namely that Schemes 4 and 5 predict very similar results. Scheme 4 is the

superior scheme for both the Crank±Nicolson and leap-frog methods. However, superior results can

be achieved using either Schemes 2, 7, 8 or 10 provided that it is used in conjunction with the forward

differencing scheme for the time derivative. While most schemes improve in accuracy upon changing

the basis of the time derivative from n to n� 1
2

to n� 1, the results for Scheme 4 deteriorates from

n� 1
2

to n� 1.

Next the ef®ciency of the various schemes is considered by presenting the CPU run time per

solution cycle, Rc. This value is estimated to have an error of the order of � 0�08 s. The results are

presented in Table V. In contrast with the results in Table V, the PISO results using the hybrid

scheme with the Crank±Nicolson scheme recorded an Rc of 2�24 s. It is worth noting that this rate is

comparable with the SOUD scheme results. This result is interesting because a steady state problem

using a higher-order differencing scheme invariably requires a longer run time per cycle. For

example, Patel and Markatos56 compared the QUICK scheme60 with the hybrid differencing scheme

and found that the computational cost approximately doubled for steady state problems. Note that the

QUICK scheme and the SOUD scheme are closely related to one another.21 The fact that the

computational cost does not increase with a more accurate differencing scheme demonstrates the

importance of the transient nature of the ¯ow (arti®cial viscosity is less likely to be permanently

established in the ¯ow); also, the temporal terms in the discretization procedure dominate the

numerical solution of the ¯ow.

The results from Table V in conjunction with the results from Table IV allow us to deduce which

are the most ef®cient schemes for the current problem. Since Schemes 7 and 8 are signi®cantly more

expensive than Scheme 4, the attraction of using these schemes diminishes as they are not particularly

more accurate than Scheme 4. We are left with Schemes 2 and 10 using the forward differencing

scheme as well as Scheme 4 using the Crank±Nicolson scheme to recommend for further

investigation.

Next the stability of `robustness' of the schemes is crudely considered by attempting to run a

simulation for 300 iterations and monitoring the velocity and pressure changes. If there are spurious

oscillations in the residual history or if the changes tend to in®nity, the simulation is de®ned to be

diverging. The (non-dimensional) time step values tested are 0�3, 0�1, 0�06, 0�03 and 0�01. The

successful non-dimensionalized time steps are recorded in Table VI. The results in Table VI only

give an estimate of the stability of the various schemes tested. It is only an estimate as diverging

Table V. CPU run time per cycle for various algorithms and various
time derivative schemes

Crank±Nicolson Leap-frog Forward difference
Rc (s) Rc (s) Rc (s)

1 Ð Ð 1�20
2 Ð Ð 2�44
3 Ð Ð 2�20
4 2�12 2�36 2�16
5 3�20 3�41 3�12
6 2�42 Ð 2�37
7 3�64 3�37 3�53
8 4�22 4�26 4�28
9 1�39 Ð 1�35

10 2�41 Ð 2�33
11 2�39 2�51 2�49
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behaviour (as de®ned above) is dependent not only the scheme's stability but also on the physics of

the ¯ow. It is unreasonable to expect physically accurate solutions for time steps of 0�3 as the

sinusoidal period of drag is three non-dimensional time units. The results from Table VI re¯ect the

previous calculations undertaken. The trend is for the schemes to become more robust if the basis of

the time derivative is increased from n to n� 1. The scheme least affected by altering the time

derivative is Scheme 5, which suggests that if we solve our matrix solution procedure to greater

accuracy, then this would also be true for Scheme 4. The stability of Scheme 4 is greater than that of

Schemes 2 and 10 which are recommended alternatives.

Finally the issue of grid resolution is dealt wiith, although we do not claim that the previous results

presented are grid-independent, since our motivation has been to establish the implicit nature of the

various schemes and this can be done despite spatial errors. However, it is useful to assess the

accuracy of our current predictions and to make comparisons wiith other numerical predictions.

Unfortunately the only experimental data are on the Strouhal number, which is found by Okajima49 to

be 0�145; the Strouhal number is the inverse of TL, whose experimental value is therefore TL� 6�896.

Results from the three grid systems are presented in Table VII as well as available data from other

numerical predictions.

The variation in the predictions in Table VII is a matter of concern. It is dif®cult to resolve the

possible reasons why there is a large discrepancy between the current set of results and other

numerical results. The predictions are dependent on the grid resolution, the time step value as well as

the algorithm methodology. Also, in the present investigation we discovered that the oscillating ¯ow

pattern takes a very long time to stabilize in terms of shedding period and drag wavelength. Larger TL

and TD values are obtained at T� 50 compared with T� 200. After a time interval of T� 150 from

the impulsive start the ¯ow does not appear to change in behaviour and results are therefore taken

from the time period T� 150±200. Grid re®nement around the cylinder in the region immediately

downstream of the cylinder is essential for accurate prediction of the lift coef®cient; the importance

of grid re®nement in order to accurately predict ¯ow separation was also found by Ramaswamy.47

Since we are interested in successfully predicting separation along the upper and lower boundaries of

the cylinder, the reason why such re®nement is important is obvious; however, it is surprising that

this phenomenon is not greatly in¯uenced by the far-downstream vortex shedding. It has been

observed in the present investigation that a larger time step value reduces the accuracy of the

predictions, although this is dependent on the type of solution algorithm applied. In the above

Table VI. Maximum successful time step applied to various
algorithms using various time derivative schemes

Crank±Nicolson Leap-frog Forward difference
�Tmax �Tmax �Tmax

1 0�03 0�01 0�06
2 0�03 0�01 0�06
3 0�03 0�01 0�06
4 0�10 0�06 0�10
5 0�10 0�10 0�10
6 0�06 0�03 0�06
7 0�10 0�06 0�10
8 0�10 0�06 0�10
9 0�03 0�01 0�06

10 0�06 0�03 0�06
11 0�10 0�10 0�10
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predictions the following time step values were used: Gresho and Chan,46 DT� 0�05; Ramaswamy,47

DT� 0�015; Davis and Moore,48 DT� 0�05; predictions in Table VII, DT� 0�005.

The predictions of Okajima50 have been included in Table VII to give a comparison of results for

Reynolds number cases above and below the test case of Re� 250. If the results are dominated by

arti®cial viscosity, it is anticipated that the results for Re� 250 prediction will tend towards the

Re� 150 set of predictions made by Okajima.50 Okajima's results suggest that CAVE
D increases with

Reynolds number as do the CD and CL peak-to-peak values, whereas the periods of lift and drag

oscillations decrease with Reynolds number. These features are broadly re¯ected in our current

results, with the main exceptions in some of the drag results. Generally speaking, the SOUD results

are in fair agreement with the data of Okajima50 and Gresho and Chan.46

5.5. Flow over a backward-facing step

Flow over a backward-facing step is fundamental in design and geometry and is consequently

found in a variety of engineering applications. The ¯ow separation process caused by the sudden

change in geometry has been used extensively, usually in order to create a recirculation region or a

sudden change in pressure. Laminar ¯ow over the backward-facing step con®guration investigated by

Armaly et al.61 has become a classical numerical problem. The problem has been further endorsed by

Gresho,62 where for a Reynolds number of Re� 800 the problem has become a standard test case.

Gresho et al.63 have established that the ¯ow is steady state and this test case is therefore used in the

present investigation as a steady state test case of the hybrid and SOUD differencing schemes using

the standard PISO scheme.

There have been many numerical studies25±25,63±74 investigating laminar ¯ow over a backward-

facing step similar to the con®guration of Armaly et al.61 Durst and Pereira68 and Gresho et al.63

Table VII. Present predictions of ¯ow characteristics using PISO scheme. (b) Numerical predictions of ¯ow
characteristics using various methodologies

CMAX
L CMIN

L TL CMAX
D CMIN

D CAVE
D TD

(a)
Grid 1, SOUD 1�006 ÿ0�998 6�112 1�876 1�616 1�744 6�018
Grid 2, SOUD 1�060 ÿ1�055 6�712 1�869 1�662 1�769 6�692
Grid 3, SOUD 1�238 ÿ1�230 6�498 1�884 1�632 1�759 7�026
Grid 1, hybrid 0�348 ÿ0�341 7�551 1�686 1�648 1�668 7�548
Grid 2, hybrid 0�407 ÿ0�394 7�001 1�588 1�541 1�564 5�628
Grid 3, hybrid 0�435 ÿ0�421 6�158 1�644 1�579 1�612 6�266

(b)
Okajima50 b � 0�7 �ÿ0�7 7�692 N=Sa N=S � 1�8 � 7�6
Okajima50 c � 1�2 �ÿ1�2 7�143 N=S N=S � 2�2 � 6�9
Gresho and Chan46 d 1�40 ÿ1�40 7�8 2�12 1�85 � 1�98 7�7
Gresho and Chan46 d 1�32 ÿ1�32 7�7 2�05 1�79 � 1�92 7�7
Gresho and Chan46 d 1�75 ÿ1�75 7�9 2�39 1�95 � 2�17 7�5
FIDAPe 1�3 ÿ1�3 � 7 N=S N=S N=S � 7� 1
Ramaswamy47 0�51 ÿ0�50 5�73 1�73 1�59 � 1�66 5�7
Davis and Moore48 0�50 ÿ0�50 6�1 1�83 1�73 � 1�78 5�9
a N=S, not stated.
b Test case for Re� 150.
c Test case for Re� 500.
d Different predictions calculated using various schemes.
e Calculations undertaken by Gresho and Chan46 using FIDAP code.
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considered the growth of the recirculation regions with time; Gresho et al.63 also studied the stability

of ¯ow for a high-Reynolds-number case. Thangam and Knight71 studied the effect of the step height

on the downstream ¯ow. Barton considered the effect of the viscous drag from the upper boundary23

and also investigated the entrance effect of the ¯ow con®guration.25

5.6. Numerical analysis of backward-facing step problem

The present investigation is a continuation from the previous studies23±25 as well as the current

numerical investigation. In this case we are interested in a time-dependent simulation of the ¯ow that

has been impulsively started. The ¯ow con®guration is illustrated in Figure 4, where the geometry has

a very small inlet channel and the inlet ¯ow pro®le is a parabola. The channel expansion number is

®xed at two, where the expansion number is de®ned as the ratio of the main channel height to the

inlet channel height. The channel is 40 step heights in length (this is considered suf®ciently long for

the outlet boundary condition not to seriously affect the upstream results). The inlet Reynolds number

is set at Re� 800, where the Reynolds number is de®ned using twice the inlet channel height, the

average inlet velocity and the dynamic viscosity. This de®nition is the same as that of Armaly et al.61

The numerical analysis used for the ¯ow around a square cylinder is also applied to the problem of

¯ow over a backward-facing step. The standard PISO scheme is used as the solution methodology

with a time step value of DT� 0�025. No-slip boundary conditions are applied for the wall

boundaries. Two grid systems were used: 70650 (grid 1) and 90670 (grid 2). Both grid systems

have re®nement close to the solid boundaries and incorporate a very small lip which prevents ¯apping

in the solution.75

5.7. Flow predictions for backward-facing step problem

The illustration of the ¯ow con®guration shows that there are three main reattachment and

separation positions, namely x1, x2 and x3. Position x1 is the main reattachment point. The strong

adverse pressure gradient causes the ®rst separation point x2; as the pressure recovers, the ¯ow

reattaches at x3. In Figure 5 the predicted streamlines are shown using grid 1 and the SOUD scheme;

the ®gure shows results at non-dimensionalized time values T� 10, 20, 30, 40 and 200. Initially the

¯ow has four major recirculation regions; this agrees with the predictions made by Gresho et al.63

The two recirculation regions furthest downstream decrease in vorticity and eventually disappear and

®nally the ¯ow only has two major recirculation regions, as is shown for T� 200. The growth of

reattachment and separation positions with time is shown in Figure 6 along the lower boundary and in

Figure 7 along the upper boundary. (There is a very small counter-recirculation region at the corner of

the step which has been ignored in these illustrations.) Figure 6 shows how the main reattachment

position x1 grows with time and how the second downstream recirculation region is created and

Figure 4. Illustration of problem of ¯ow over a backward-facing step
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destroyed with time. Similar phenomena are observed in Figure 7, where the upstream recirculation

grows in size and moves slowly downstream with the growth of the lower recirculation region.

5.8. Comparison of numerical results with benchmark solutions

Benchmark results from References 76 and 77 are shown in Table VIII for reattachment and

separation positions (non-dimensionalized with step height) and compared with the present results.

The numerical results shown in the table are taken from the results that use the ®nest grid and best

outlet treatment in their particular study. There is quite a variety of disagreement, although the

present benchmark solutions are in good agreement with recent predictions made by Gartling,76

Srinivasan and Rubin (see Reference 77) and Barton.24 For this problem the superiority of the SOUD

scheme in contrast with the hybrid scheme is evident. This is partly observed by the predictions using

grid 1 with the hybrid differencing scheme, where the predictions fail to successfully converge, and

partly by the predictions using grid 2, where the results completely fail to agree with recent

benchmark solutions.

Figure 5. Streamlines of ¯ow over a backward-facing step at non-dimensionalized time values T� 10, 20, 30, 40 and 200 (from
top to bottom)
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5.9. Further discussion of results

Square cylinder results

The reduced stability of the leap-frog method in comparison with other schemes can be argued via

stability analysis;40,41 however, there is a closely related argument which relates to our present

method of discretization. The pole coef®cient term is dominated by the value of rDxDy=Dt for the

Crank±Nicolson scheme; however, this term becomes rDxDy=2Dt for the leap-frog scheme. The

corresponding source term therefore also reduces in magnitude. This is important when the matrix is

inverted, as instabilities caused by the discretization will be suppressed by the large source coef®cient

term. This argument therefore suggests that a third-order one-sided forward differencing scheme will

further improve the stability of most schemes as the pole coef®cient increases in magnitude from

3rDxDy=2Dt for second-order accuracy to 11rDxDy=6Dt for third-order accuracy. The third-order

one-sided forward differencing scheme is given as

@U

@t

����
n�1

� 11U n�1 ÿ 18Un � 9Unÿ1 ÿ 2U nÿ2

6Dt
� O�Dt3�: �28�

The PISO scheme using the forward differencing time derivative predicts greater discrepancies

than using the Crank±Nicolson scheme; this further demonstrates how the PISO scheme does not

behave as a fully implicit scheme and therefore Kim and Benson's10 assumption that it would

improve the predictions is incorrect.

Figure 6. Growth of lower reattachment and separation positions with time
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Backward-facing step results

The backward-facing step ¯ow results evaluate the behaviour of the differencing schemes, where

the SOUD scheme predicts superior results in contrast with the hybrid scheme. It is perhaps

surprising that the predictions using the coarse grid with the hybrid differencing scheme do not

Figure 7. Growth of upper reattachment and separation positions with time

Table VIII. (a) Present predictions of reattachment and
separation positions at T� 200. (b) Steady state numerical

predictions of reattachment and separation positions

x1 x2 x3

(a)
Grid 1, SOUD 11�80 9�47 20�62
Grid 2, SOUD 12�19 9�75 20�89
Grid 1, hybrid Ð Ð Ð
Grid 2, hybrid 8�32 6�07 13�55

(b)
Barton24 12�03 9�64 20�96
Srinivasan and Rubina 12�44 10�18 20�50
Gartling76 12�20 9�70 20�95
Sohn70 11�50 9�40 18�80

a Refer to Reference 77.
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successfully converge, because the scheme introduces a signi®cant amount of arti®cial viscosity.

Therefore we would expect the `effective' Reynolds number to reduce, causing shorter reattachment

and separation positions as well as rapid convergence. The lack of rapid convergence re¯ects,

perhaps, a phenomenon previously observed in other numerical predictions, namely that an

incorrectly de®ned problem or inadequately resolved problem tends not to converge.

6. CONCLUDING REMARKS

The standard PISO scheme does not behave as a fully implicit scheme and therefore using the Crank±

Nicolson scheme as opposed to the one-sided forward differencing scheme is more bene®cial for

accurate predictions.

The addition of another correction level to the PISO scheme has a negligible effect (Schemes 4 and

5 predict virtually identical results).

The PISO scheme compares very favourably with all other schemes tested in terms of robustness,

accuracy and required CPU processing time.

Generally speaking, basing the temporal derivative on the n� 1 time level as opposed to the nth

time level increases the stability of any particular scheme. A third-order one-sided forward

differencing scheme may prove to be a successful replacement for the second-order one-sided

forward differencing scheme, not least because it should further increase the scheme's stability.

Schemes 2 and 10 using the one-sided forward differencing scheme are recommended alternatives

to the PISO scheme. They are arguably more implicit, more accurate and easier to code than the PISO

scheme. Both schemes are variants on the SIMPLE methodology; in fact, Scheme 2 is simply a

repetition of the SIMPLE algorith. For this reason the scheme in particular is recommended for future

applications, especially when studying complex ¯ows, provided that a small time step is applied. The

reason why this scheme is recommended for complex ¯ows is that if, for example, turbulent ¯ow is

being examined, we then need to solve additional equations such as turbulent transport terms which

are dependent on the mean velocity ®eld. Therefore a more implicit treatment of the source terms is

achieved by updating all the source terms and coef®cient terms before the second solution cycle

compared with the PISO scheme or Scheme 10.

Finally, Schemes 2 and 10 are SIMPLE variants and have the advantage that velocity correction

terms do not need to be calculated or stored.
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